
XML Structure and Syntax

November 3, 2003

5-2

A
 Sim

ple Exam
ple

<?xml version="1.0" ?>
<!DOCTYPE main [
<!ELEMENT main (purchase)*>
<!ELEMENT purchase (date, account, item+)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT account (#PCDATA)>
<!ELEMENT item (itemno, itemdes, quantity)>
<!ELEMENT itemno (#PCDATA)>
<!ELEMENT itemdes (#PCDATA)>
<!ELEMENT quantity (#PCDATA)>
]>
<main>
<purchase>

<date>19-September-1999</date>
<account>Fred_Flintstone</account>
<item>

<itemno>478B</itemno>
<itemdes>3 1/2 Floppy Disk</itemdes>
<quantity>1000</quantity>

</item>
<item>

<itemno>6937A</itemno>
<itemdes>Mouse Pad</itemdes>
<quantity>50</quantity>

</item>
</purchase>

</main>

Document Type Definition
specified by the

Document Type Declaration

XML Marked-Up Data

November 3, 2003

5-3

Som
e Key Things…

• Extensibility
– not limited to a pre-defined set of tags: “…allows an author

to define a particular structure…by defining the parts (tags)
that fit that structure.”

• Everything is Textual
– gives readability—makes life a LOT easier for the developer;

makes interoperation smoother; etc.
– can be efficient because text is usually highly compressible

• Is the foundation for a whole lot of new
work
– interoperability has previously been approached in a closed

fashion
• mostly just groups of vendors (sometimes!) agreeing to

support each other’s file formats, etc.
– now being tackled by the standards community

November 3, 2003

5-4

X
M

L Structure

• XML document composed of:
– declarations, elements, entities, processing instructions and

comments
• some are optional, some required
• an important aspect is the possibility of creating self-

describing documents
– may also contain processing code

November 3, 2003

5-5

X
M

L Structure…

• Two aspects:
– logical

• defined by the Document Type Definition (DTD): what to
include, what relationships pertain between the various
parts

– physical
• the actual data being tagged
• correspondence with the logical structure can be checked

– an analogy…
• consider a block of flats: the plan defines the block’s

logical structure while “Young Miss Jones over in Flat
32B” relates to the physical makeup. Allows validation,
thus: “How come Old Mr. Smith spent the night in Young
Miss Jones’ Flat?”

November 3, 2003

5-6

Structure…

• Tags are defined according to need
– accounts for XML’s extensibility

• XML can use Unicode

– can deal
with
multi-byte
character
sets

<?xml version="1.0" encoding= "UTF-8" ?>

November 3, 2003

5-7

D
ocum

ent Tree

• Elements define a tree structure
– must be correctly nested: perfect nesting is required

– note the single document root
• everything must be contained within this

<A>

<C>
</C>

P

<A>

<C>
</C>

O
A

B C

November 3, 2003

5-8

M
ore Tree…

<?xml version="1.0"?>
<philosophies>

<philosophy ID="1" type="taoism">
Bad Stuff happens...

</philosophy>
<philosophy ID="2" type="pessimism">

You think this is bad stuff? This is just the beginning.
</philosophy>
<philosophy ID="3" type="animism">

We don't need any more bad stuff. Better sacrifice two virgins!
</philosophy>
<philosophy ID="4" type="atheism">

It may appear to be bad stuff but we don't believe it for a moment.
</philosophy>
<philosophy ID="5" type="materialism">

You may have more bad stuff than me, but wait until I go shopping...
</philosophy>

</philosophies>

November 3, 2003

5-9

Structure

attributes

attributes

Processinginstruction

Comment

Document Type

Document

Element

entities

notations

EntityReference CDATASection

ProcessingInstruction Text Comment

November 3, 2003

5-10

Syntax: Elem
ents

• Elements
– containers for data
– may be empty

• special syntax

– may possess associated attributes
– naming rules

• case sensitive
• names beginning with xml (in any combination of case)

are reserved
• the use of a colon in a name should be avoided

– reserved for experimentation

<EVENT TYPE="Birthday">
<DATE>
25-04-1999

</DATE>
<MESSAGE>
The better-half’s 40th…FORGET THIS AND DIE!!!

</MESSAGE>
</EVENT>C

on
ta

in
er

 E
le

m
en

ts

Attribute

<_>
<fred>
<FreD99>
<_fred>
<a.long.name>
<another_long-name>

P
<a bad name>
<$5>
<help!>
<:fred>

O

<TAG></TAG> <TAG />

November 3, 2003

5-11

M
ore Elem

ents…

• Whitespace is important in XML
– within a mixed content model (a content model that allows

both elements and text nodes), XML considers white space to
be significant and preserves it. In other content models, white
space is ignored.

– the special attribute xml:space may be attached to an element
to tell the processing application what the XML document
wants it to do with whitespace

• only possible values are “default” and “preserve”
– line breaks in non-markup data are also preserved and are

signalled to the application
• as a single newline

character: ‘#xA’
<?xml version="1.0" ?>
<!DOCTYPE HAIKU [
<!ELEMENT HAIKU (#PCDATA)>
<!ATTLIST HAIKU xml:space (default|preserve) 'preserve'>
]>
<HAIKU>
I'm sorry, there's -- um --

insufficient -- what's-it-called?
The term eludes me ...

-- Owen Mathews
</HAIKU>

November 3, 2003

5-12

Syntax: A
ttributes

• Attributes
– provides a way of associating values to an element without

that value actually being part of the element

– the value part must be enclosed in quotes
• either double or single can be used
• treated as plain text—not parsed for further markup

– still must match encoding appropriate to host element

– xml:lang is a reserved attribute
• identifies the human language in which the element was

written

<SHOE ID="99864127-A">

<p xml:lang="en-GB">What colour is it?</p>
<p xml:lang="en-US">What color is it?</p>

November 3, 2003

5-13

Elem
ents / A

ttributes

• Which to choose?
– one of the most common questions…
– attributes and elements seem to be interchangeable from the

modelling point of view
• No hard-and-fast rule

– next couple of slides present guidelines…
– a few “rules of thumb”:

“Generally speaking, when human beings are expected to
create or work with XML documents, it is better to use
elements than attributes.”

elements “push” the program along, while attributes are “pulled” in…

The technical case against attributes is very strong… “Two ways of representing the simplest of data (a
name/value pair) has caused a fracture that has propagated through the DOM, DTDs, namespaces, queries,
schemas, etc. and the higher it goes the more problems it is causing.” The only argument for keeping attributes
seems to be legalistic precedence, that is, “we made that mistake so long ago that we cannot fix it now.”

November 3, 2003

5-14

Forced Choices

• A few guidelines:
– the data contains substructures

• model as an element: attributes take only simple strings
– the data contains multiple lines

• attributes should be simple and short or they become
unreadable/unusable

– the data changes frequently
• when the data will be frequently modified, especially by

the end user, then model as an element: XML editors
usually make it easy to find and modify element data

– the data is confined to a small number of fixed choices
• makes sense to use an attribute, which can be prevented

from taking on any value that is not in the predefined list

November 3, 2003

5-15

Stylistic Choices

• A few more heuristics:
– visibility

• if the data is intended to be shown to an end user then it
should be an element but if the information guides
processing but is never displayed, then it may be better as
an attribute

– consumer / provider
• if data is entered by a human, it may be best as an

element
– container vs. contents

• another way of thinking about elements and attributes is
to think of an element as a container. Characteristics of
the container itself correspond to attributes.

November 3, 2003

5-16

YA
M

L

• Some people think that XML is too complex…
– various alternatives exist

• YAML is one example that is oriented towards PERL
programmers

– With maps (%), lists (@) and scalars ($)

• Aims for simplicity and better data density
buyer : %

address : %
city : Royal Oak
line one : 458 Wittigen's Way
line two : Suite #292
postal : 48046
state : MI

family name : Dumars
given name : Chris

date : 12-JAN-2001
comments :

Mr. Dumars is frequently gone in the morning so try late afternoon.
delivery : %

method : UZS Express Overnight
price : 45.50

invoice : 00034843
product : @

%
desc : Grade A, Leather Hide Basketball
id : BL394D
price : 450.00
quantity : 4

%
desc : Super Hoop (tm)
id : BL4438H
price : 2,392.00
quantity : 1

tax : 0.00
total : 4237.50

November 3, 2003

5-17

Syntax: Com
m
ents

• Comments
– enable the creator of a document to explain why something

was done the way it was
• or to assert ownership over the data
• or anything else…

– do not nest

– can only be placed outside other markup

– must not contain --
• keeps XML compatible with SGML

– contents can be examined by processor if needed
• bad style…

<!-- this is a comment -->

<!-- this is a comment <!-- this is illegal --> -->

<TAG <!-- you can’t do this --> > <TAG> <!-- this is OK -->

November 3, 2003

5-18

Syntax: CD
A
TA

• CDATA
– “Character Data”

• not marked-up data
– an ‘escape’ facility—“leave me alone”

• XML’s normal parsing turned off for the CDATA section

• one way of embedding code…
– obviously, the actual data cannot contain]]>

• otherwise the CDATA section would be incorrectly
terminated

– overuse is bad style
• since the structure of the included data remains opaque

– CDATA is used for attribute values

<PARA>
In XML a comment is opened with the sequence <![CDATA[<!--]]>.

</PARA>
<PARA>

A comment finishes with the sequence <![CDATA[-->]]>.
</PARA>

<![CDATA[This is left alone $&$(&&&!!! <!—><>>>]]> but this gives errors]]>

<?xml version=“1.0”?>
<PROGRAM lang=“BASIC” xml:space=“preserve”>
10 LET A=10
20 LET B=20
30 IF A <![CDATA[<]]>B THEN PRINT A+B
</PROGRAM>

November 3, 2003

5-19

Syntax: PIs

• Processing Instructions
– ignored by XML itself; commands or information is passed

straight to the application that is processing the XML data

– may need many processing instructions if allowing for many
alternative processing environments
• a potential (and nasty) ‘gotcha’

– the target name “xml” (in any combination of cases) is
reserved for use by XML itself:

<?target instructions ?>

the name of the application
that will do the processing

passed to the target application for it to process

<?xml version="1.0" ?>

<PARA>
this element also contains two processing instructions (to allow for
two different processing applications)
<?javascript do something for javascript ?>
<?perlscript do something equivalent for perlscript ?>

</PARA>

November 3, 2003

5-20

Syntax: Entities

• A sort of macro facility

– can give a facility similar to C’s #define…
• and with the same dangers

– it’s possible to construct non-syntactic substitutions, for
example

– also provides ability to construct a document from external
parts

– there exist a number of predefined entities for key parts of
the XML markup language that cannot be directly used as
content:

– character entities allow arbitrary characters to be represented
in the XML text

<!ENTITY name "Bob Brown">
…
<PARA>Hi there! I am &name;. Who are you?</PARA>

< > & ' "
< > & ‘ “

<?xml version="1.0" ?>
<MAIN>

< © > Bob Brown, Transentia Pty. Ltd., 2000
</MAIN>

November 3, 2003

5-21

M
ore Entities…

• Four varieties:
– Parsed

• used to include “boilerplate” text in a document

• may be internal or external
– support for external parsed entities is optional for non-

validating parsers

– Unparsed
• used to pass a reference to a piece of external content,

along with a description of the type of the content
– uses NOTATIONs

– Internal
– External

<!ENTITY H “Hydrogen”>
…
<SENTENCE>

&H; is the lightest of all atoms.
</SENTENCE>

November 3, 2003

5-22 <ATOM STATE='GAS'>
<NAME>Helium</NAME>
<ATOMIC_WEIGHT>4.0026</ATOMIC_WEIGHT>
<ATOMIC_NUMBER>2</ATOMIC_NUMBER>
<BOILING_POINT UNITS="Kelvin">4.216</BOILING_POINT>
<MELTING_POINT UNITS="Kelvin">0.95</MELTING_POINT>
<SYMBOL>He</SYMBOL>
<DENSITY UNITS="grams/cubic centimeter"><!-- At 300K -->
0.1785

</DENSITY>
<ELECTRON_CONFIGURATION>1s2 </ELECTRON_CONFIGURATION>
…
<THERMAL_CONDUCTIVITY UNITS="Watts/meter/degree Kelvin">
<!-- At 300K -->
0.152

</THERMAL_CONDUCTIVITY>
</ATOM>

External Entities

<ATOM STATE="GAS">
<NAME>Hydrogen</NAME>
<ATOMIC_WEIGHT>1.00794</ATOMIC_WEIGHT>
<ATOMIC_NUMBER>1</ATOMIC_NUMBER>
<OXIDATION_STATES>1</OXIDATION_STATES>
…

</ATOM>

<!ENTITY H SYSTEM "h.xml">
<!ENTITY He SYSTEM "He.xml">

<?xml version="1.0" ?>
<!DOCTYPE PerTable [
<!ENTITY % Elements SYSTEM "Elements.xml">
%Elements;
]>
<PerTable>
&H;
&He;

</PerTable>

November 3, 2003

5-23

Syntax: N
otation

• Identify the format of the content of
unparsed entities by name

– entity declaration doesn’t tell the processor what to do with
the type of data; needs an associated notation declaration:

• note how this incorporates very platform-specific
information

– probably only useful on the server side…
– also implies versioning problems
– may prefer to use something like HTML’s IMG tag:

• or use XLink (if & when it is specified...)

– myImage is an unparsed entity

<!ENTITY myImage SYSTEM "image.gif" NDATA GIF>

<!NOTATION GIF SYSTEM "Iexplore.exe">

<!ELEMENT slide (image?, title, item*)>
<!ATTLIST slide type (tech | exec | all) #IMPLIED >
<!ELEMENT title (#PCDATA)>
<!ELEMENT item (#PCDATA | item)* >
<!ELEMENT image EMPTY>
<!ATTLIST image alt CDATA #IMPLIED

src CDATA #REQUIRED
type CDATA "image/gif" >

November 3, 2003

5-24

The D
TD

• Document Type Definition
– XML’s information modelling facility
– specified by the Document Type Declaration at the top of the

file
– allows a processing application to determine whether the data

contained in an XML is structured correctly:
• no missing (required) data/attributes
• no extra (unexpected) data
• relationships between different

parts is correct
– similar to a database schema

• not as thorough, though
– being worked on…

– needs careful development
• must ensure that the definition is unambiguous

– otherwise processing becomes difficult/inefficient or even
incorrect

<?xml version="1.0" ?>
<!DOCTYPE FRED [
<!ELEMENT FRED (GLOBAL)>
<!ELEMENT GLOBAL (#PCDATA)>
<!ATTLIST GLOBAL
BILL (a|b|c) "c">

]>
<FRED>
<GLOBAL BILL="a">some content here…</GLOBAL>

</FRED>

November 3, 2003

5-25

W
hy H

ave A
 D

TD
?

• Well-formed versus valid XML
– DTD allows correspondence between physical and logical

structure to be checked
– a well-formed document is structurally sound but may

contain other errors
• missing elements, attributes, etc.; duplicate IDs that

should be unique, etc.
• an XML document without an accompanying DTD can

really only be checked for “well formed-ness”
– a valid document must be well-formed, plus the contents of

the document must conform to the rules specified in the DTD
• only if there is an associated DTD can conformance be

checked: “…unlike HTML, the built-in validity checking
of XML allows users to trust the data. Validity checking
makes XML appropriate for transactions, electronic
commerce and inventory management.”

November 3, 2003

5-26

Reiterating…

• The DTD allows:
– the document’s structure to be defined
– the document’s contents to be defined

• badly! A schema is a much better tool…

November 3, 2003

5-27

Validity W
ithout D

TD

• It is possible to validate a document without
requiring DTDs
– thus:

• all attribute values would have to be given; there could be
no assumed default values

• there could be no entity mechanism
• whitespace handling would be very difficult

– when to ignore?

– the probability of unchecked errors being introduced would
become very high

• the requirement for self-discipline would be too great
– I am well-disciplined, but are you?

• :-)

• Checking against a DTD doesn’t prevent
garbage content, just lousy structure:

<DATE>the owl and the pussycat went to sea…</DATE>

November 3, 2003

5-28

M
ore D

TD
…

• The Document Type Definition is actually
composed from the union of two subsets:
– external

• included into the XML document being
examined/processed by reference

– internal
• contained within the actual XML document

– read before external DTD subset (if one is specified) and
so takes precedence

• “the first one in wins”

– DTD can be completely internal, completely external or some
mixture
<?xml version="1.0" ?>
<!-- file: fred.xml -->
<!DOCTYPE FRED SYSTEM "fred-external-dtd.xml" [
<!ATTLIST GLOBAL

BILL (a|b|c) "c">
]>
<FRED>

<GLOBAL BILL="a">some content here…</GLOBAL>
</FRED>

<?xml version="1.0" ?>
<!-- file: fred-external-dtd.xml -->
<!ELEMENT FRED (GLOBAL)>
<!ELEMENT GLOBAL (#PCDATA)>

November 3, 2003

5-29

H
ierarchy

• Internal and External subsets form a
hierarchical arrangement
– allows modularisation and promotes reuse of (parts of) a

DTD
• the “pizza model”

– build a DTD based on a core and then add the toppings
needed to create a particular document

– e.g. Text Encoding Initiative (TEI) or Interactive Electronic
Technical Manuals
(EITM)

“There is a fixed order in which the
external and internal DTD subsets are read
and interpreted. First the internal DTD
subset is read, and then the external DTD
subset is read. If something is declared in
the internal DTD subset, its declaration
cannot be changed in the external DTD
subset. However, some things (such as
additional attributes) can be added to
declarations.” site DTDStandard

Texts
Standard
Graphics

Texts

Graphics

Local
DTD

XML
DOC

Texts

Graphics

Local
DTD

XML
DOC

November 3, 2003

5-30

“Inheritance”

• Hmmm…
– some authors seem to confuse reuse with inheritance

• in XML, modularisation of parts of a DTD can lead to
reuse

– but is this inheritance? <?xml version="1.0" ?>
<!ELEMENT NumberOfChapters (#PCDATA)>
<!ELEMENT CoverColour (#PCDATA)>

<?xml version="1.0" ?>
<!DOCTYPE COOKBOOK SYSTEM "book-dtd.xml" [
<!ELEMENT COOKBOOK (NumberOfChapters, CoverColour, Recipe)>
<!ELEMENT Recipe (#PCDATA)>
]>
<COOKBOOK>
<NumberOfChapters>10</NumberOfChapters>
<CoverColour>Red</CoverColour>
<Recipe>Buy everything from supermarket</Recipe>

</COOKBOOK>

<?xml version="1.0" ?>
<!DOCTYPE TEXTBOOK SYSTEM "book-dtd.xml" [
<!ELEMENT TEXTBOOK (NumberOfChapters, CoverColour, Glossary)>
<!ELEMENT Glossary (#PCDATA)>
]>
<TEXTBOOK>

<NumberOfChapters>1</NumberOfChapters>
<CoverColour>Blue</CoverColour>
<Glossary>Learning: A little knowledge is a dangerous thing!</Glossary>

</TEXTBOOK>

November 3, 2003

5-31

SYSTEM
 Vs. PU

BLIC

• External subsets referenced in one of two
ways:
– PUBLIC

• really a hangover from SGML
• points to an entry in a catalog file

– entry in the catalog then supplies the URI

– entries should be registered, of course…
• string is actually (supposed to be!) meaningful

– SYSTEM
• subset referenced via a URI

– Universal Resource
Identifier

• enhancement of URL
• most often simply a URL

<?xml version="1.0" ?>
<!DOCTYPE FRED
SYSTEM "http://dtd.myorg.com/fred-external-dtd.xml" [
…

]>
<FRED>
…

</FRED>

<?xml version="1.0" ?>
<!DOCTYPE FRED PUBLIC "-//IETF//DTD HTML//EN" [
…

]>
<FRED>
…

</FRED>
PUBLIC "-//IETF//DTD HTML//EN" "html.dtd"

http://dtd.myorg.com/fred-external-dtd.xml

November 3, 2003

5-32

Standalone

• May want to indicate that a document is
self-contained and that there is no need to
read an external DTD subset, even if one
exists…

– it is still an error if something that is not in the internal DTD
subset is referenced…

<?xml version="1.0" standalone="yes" ?>

November 3, 2003

5-33

Elem
ent D

eclarations

• Structure Symbols
– the basis of the DTD

‘language’
– similar to regular expression

operators
• generally easy to grasp:

similar to PERL language
or UNIX shells or…

– ()
• used for grouping

– ,
• specifies a sequence and

associated ordering
– |

• separates two (or more)
alternatives

– ?
• denotes an optional entry

– +
• required one or more times

– *
• required zero or more

times
– no symbol

• must be as given

<!ELEMENT EMAIL (TO+, FROM, CC*,
BCC*, SUBJECT?, BODY?)>

November 3, 2003

5-34

M
ore Elem

ent
D
eclarations…

• Recall that an element is a container
–

– name provides a name for the container element
– content may be:

• EMPTY
– element has no children

• ANY
– element can hold anything

• #PCDATA
– element can hold parsed character data

• textual data possibly containing entity references, etc…

• content model
– as defined by the set of structure symbols used

<!ELEMENT name content>

November 3, 2003

5-35

A
m
biguity/M

ixed
Content M

odels

• Ambiguity is very undesirable in a content
model
– consider:

• this is not considered an error, but it is a problem…
– loss of clarity in the model, greater memory

requirements and processing time

– better rewritten as:

• Mixed content models allow for either
highly-defined content or very ‘free’ content
– often very useful during development

– note required use of ‘*’ in the definition

<!ELEMENT confused ((this.one, that.one) |
(this.one, the.other.one))>

<!ELEMENT much.better (this.one, (that.one | the.other.one))>

<!ELEMENT mixed.content (#PCDATA | alpha | beta | gamma)*>

“If you give XML software an element
stream that can be processed in several
different ways, it will normally select
just one of those ways (probably not
even telling you what it's done), and
then continue processing. This
situation can lead to confusion…”

November 3, 2003

5-36

A
ttribute

D
eclarations

• Slightly more complex
– can define multiple attributes in one go
– attributes may have a type; may have default values
– attributes may also have other constraints placed upon them

<BOOK publisher="BigCo.">
<Title>

Gardening for Beginners
</Title>
<Author>

G. Fingers
</Author
<Price>

27.50
</Price>

</BOOK>
<BOOK publisher="Kooks Publishers Ltd." level="advanced">

<Title>
Try Brain Surgery in the Comfort of Your Own Home

</title>
<Author>

I. M. Knutts
</Author>
<Author>

C. Rasé
</Author>
<Price currency="US$">

4.45
</Price>

</BOOK>

<!ELEMENT BOOK (Title, Author*, Price)>
<!ATTLIST BOOK
publisher CDATA #REQUIRED
level (beginners | intermediate | advanced) "beginners">

<!ATTLIST Price
currency (A$ | US$) "A$">

…

<!ELEMENT STUDENT (NAME)>
<!ATTLIST STUDENT STUDENT_ID ID #REQUIRED>

November 3, 2003

5-37

A
ttribute Types

• Include:
– CDATA

• character data
– not parsed; can still

contain entity
references

– ENTITY
• value must be an entity

declared in the DTD
– ENTITIES

• whitespace delimited list of
ENTITY values

– ID
• an identifier which the

processor should ensure is
unique throughout the
document

– NOTATION
• value is a notation

– IDREF
• a reference to an ID

elsewhere in the document
– IDREFS

• whitespace delimited list of
IDREFs

– NMTOKEN
• attribute value is any

mixture of “name token”
characters (alphanumeric,
‘.’, ‘-’, ‘:’, ‘_’)

– NMTOKENS
• whitespace delimited list of

NMTOKENs
– Enumerated

• attribute must exactly
match one of the given
values

November 3, 2003

5-38

Ids & ID
REFs

<?xml version="1.0"?>
<!DOCTYPE FAMILYTREE [
<!ELEMENT FAMILYTREE (PERSON*)>
<!ELEMENT PERSON (NAME, SPOUSE*)>
<!ATTLIST PERSON

ID ID #REQUIRED
FATHER IDREF #REQUIRED
MOTHER IDREF #REQUIRED

>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT SPOUSE EMPTY>
<!ATTLIST SPOUSE

IDREF IDREF #IMPLIED>
]>
<FAMILYTREE>
<PERSON ID="p1" FATHER="p3" MOTHER="p4">
<NAME>Fred Bloggs</NAME>
<SPOUSE IDREF="p2"/>

</PERSON>
<PERSON ID="p2" FATHER="p5" MOTHER="p6">
<NAME>Mary Sand</NAME>
<SPOUSE IDREF="p1"/>

</PERSON>
<PERSON ID="p3" FATHER="p8" MOTHER="p22">
<NAME>Charlie Bloggs</NAME>
<SPOUSE IDREF="p4"/>

</PERSON>
<PERSON ID="p4" FATHER="p18" MOTHER="p46">
<NAME>Amy Bloggs</NAME>
<SPOUSE IDREF="p3"/>

</PERSON>
…

November 3, 2003

5-39

A
ttribute D

efaults

• Include:
– #REQUIRED

• a value must be specified for the relevant attribute; a
missing value is an error

– #IMPLIED
• the value is optional

– #FIXED
• this attribute must be given and must have the value

specified in the declaration; anything else is an error
– default

• gives a default value for the attribute; if a value is not
explicitly given for the attribute, the default value is
assumed and passed to the processing application

November 3, 2003

5-40

O
ptional A

ttribute

• Strictly speaking there is no such thing…
– can use the following ‘trick’:

– allows:

• the default value of "" would be assumed for
clever.attribute…

<!ATTLIST clever.element
clever.attribute (A | B | C) "" >

<clever.element>
something wonderful

</clever.element>

November 3, 2003

5-41

Conditional Inclusion

• Facilities to turn parts of the external DTD
subset on or off…
– IGNORE

• specifies that the enclosed
portion of the DTD should
be ignored by the processor

– INCLUDE
• the enclosed portion of the

DTD should be made available
to the processor

– useful with entities:

• note use of parameter entities; entities whose use is
restricted to the DTD

<!-- file: fred-dtd.xml -->
<![IGNORE [
<!ELEMENT BCC (#PCDATA)>
<!ATTLIST BCC
HIDDEN CDATA #FIXED "true">

]]>
<![INCLUDE [
<!ELEMENT SUBJECT (#PCDATA)>
]]>

<!ENTITY % SECURE "IGNORE">
<!ENTITY % INSECURE "INCLUDE">
<![%SECURE; [anything goes here]]>
<![%INSECURE; [and any DTD definitions go here as well]]>

<?xml version="1.0" ?>
<!DOCTYPE FRED SYSTEM "fred-dtd.xml" [
<!ELEMENT FRED (SUBJECT)>
]>
<FRED>
<SUBJECT>blah blah blah…</SUBJECT>

</FRED>

November 3, 2003

5-42

Param
eter Entities

• Used to simplify and factor out commonality
in declarations in the DTD

<!ENTITY % datemodel "(YEAR, MONTH, DAY)">
<!ELEMENT DOCUMENTDATE %datemodel;>
<!ELEMENT REVISIONDATE %datemodel;>
<!ELEMENT LASTACCESSDATE %datemodel;>

<!ENTITY % source "CITATION | NAME">
<!ELEMENT SENTENCE (#PCDATA | EMPHASIS | %source;)*>
<!ELEMENT RESOURCE (%source;)>
<!ELEMENT ORIGIN (%source; | UNKNOWN)>

