
Saturday, 23 October 2004 1

XQuery
Bob Brown
bob@transentia.com.au

transentia
http://www.transentia.com.au

t

mailto:bob@transentia.com.au
http://www.transentia.com.au

Saturday, 23 October 2004 2

“Let a hundred flowers bloom…”

“Let a hundred FLWRs bloom…”

Thought for XQuery…

mao tse tung

Saturday, 23 October 2004 3

Overview

• From the W3C…

• In Plain English…

“The mission…is to provide flexible query facilities to extract
data from real and virtual documents on the World Wide Web,
therefore finally providing the needed interaction between the
Web world and the database world. Ultimately, collections of
XML files will be accessed like databases. … to develop the
first world standard for querying web documents…”

XQuery is a query language specification under
development by the World Wide Web Consortium (W3C)
that's designed to query collections of XML data—not just
XML files, but anything that can appear as XML,
including relational databases.

Saturday, 23 October 2004 4

Positioning Quotes

“[X]Query may cause one of the biggest
changes to server-side programming since
Java servlets.”
— Jason Hunter

“Like it or not, the SQL standard is in its twilight years, with
XQuery poised to overtake it in terms of major new
applications by 2010.”
— Jim Melton

‘XQuery brings “SQL-like” querying
power to applications that require access,
selection, integration and transformation
of information from one or more XML
sources.’
— BEA

Saturday, 23 October 2004 5

Importance for the Enterprise

• Today
– Data stored in many formats;

accessed by many protocols;
manipulated by many programming
environments; presented via many
technologies

• Tomorrow
– Data stored in XML-format; accessed

via WebServices (XML); manipulated
via XQuery; presented via XSLT
(XML)

Saturday, 23 October 2004 6

“It’s the Data, Dummies!”

• (…don’t worry about J2EE/.Net;
COBOL; Ada; …make sure that
you can operate with/on XML and
everything will turn out smelling
like a bunch of flowers!)

Saturday, 23 October 2004 7

XQuery

• Started in 1998
• Now nearly a full W3C

recommendation
– In “Last Call” stages

• Most recent: 23 July 2004

• Well supported by developers
– Commercial and Open Source
– Lots of toolkits around

Hot!

Saturday, 23 October 2004 8

XQuery/2
“So what have we been doing for the last 4 years?

1. Real innovation...we've had to keep both traditional document mungers and traditional
database people happy, since XML completely blurs the old distinctions between
documents and data...

2. Syntax issues. [The syntax] is intuitive for users, but has required a lot of work on the
grammar side.

3. Compatibility with existing complex standards....our cooperation with other Working
Groups has cost very significant time....

4. Inefficiencies and trying to invent our own process.

It's easier to work quickly when any of the following are true:

• Nobody cares about what you are doing

• There's not a lot of prior work

• There's a lot of prior art that solves just exactly the problem you want to solve

• There's a homogeneous user community, so you can attend to just their needs

• You don't have to prove interoperable implementations

• You're allowed to just ignore public comments you don't agree with

• All implementations operate in the same environment, and look fairly similar

• It's a small, simple problem

As it happens, none of this is true for XQuery.”
Jonathan Robie, on xml-dev list

Saturday, 23 October 2004 9

Important Question
• How does XQuery compare to SQL?

– XQuery is to XML what SQL has been to relational
data…with significant advantages

• SQL is a language for retrieving from relational
sources

• XQuery provides retrieval from XML sources, as well
as advanced processing capabilities

– integrate, manipulate, transform, and filter

– XQuery and XML allows a developer to morph a
wide range of input data into a specific application-
friendly form

– The nested and flexible structure of XML may meet
processing requirements better than the flat
relational structures returned by SQL

Saturday, 23 October 2004 10

Important Question/2
• How does XQuery compare to XPath and

XSLT?
– Before XQuery, developers used the XPath query

language to locate items in an XML document and
the Extensible Stylesheet Language Transformation
engine (XSLT) to transform XML information

– XPath and XSLT work primarily on XML files
– XQuery addresses all the data needs of a Web-

based application: access multiple sources, select
information from them, join it, and transform it to
meet the application needs

– XQuery is a declarative language that is amenable
to query optimization of the form that SQL query
processors employ

Saturday, 23 October 2004 11

Three Facets
• XQuery is really three languages in one

– The “surface” syntax
• The most visible language that users are most

likely to come into contact with
– XQueryX

• An alternative XML-based syntax that replaces
the surface language with one that's more
tractable to machine processing

– Now on hold, at least unofficially, until a better
replacement can be devised

– A formal algebraic language
• Describes the inner workings of an XQuery

processor in quite a bit of detail

Saturday, 23 October 2004 12

The W3C Documents
• XML Query Requirements

– The planning document for the working group. A list of XQuery desiderata.
• XML Query Use Cases

– A number of real-world scenarios and XQuery snippets solving specific problems.
• XQuery 1.0: An XML Query Language

– The central document, introducing the language itself and overviews everything else.
• XQuery 1.0 and XPath 2.0 Data Model

– Describes the data items a query implementation must understand.
• XQuery 1.0 and XPath 2.0 Formal Semantics

– The underlying algebra formally defining the language.
• XML Syntax for XQuery 1.0 (XQueryX)

– An alternative syntax for those who prefer XML. Preferred by machines everywhere.
• XQuery 1.0 and XPath 2.0 Functions and Operators Version 1.0

– Basic functions and operators on Schema datatypes and XQuery nodes and node
sequences.

• XML Path Language (XPath) 2.0
– The XPath documentation, broken out separately.

• XPath Requirements Version 2.0
– The requirements document for XPath.

• XSLT 2.0 and XQuery 1.0 Serialization
– A first look at the considerations involved in outputting serialized "angle-bracket" XML

from the XQuery 1.0 and XPath 2.0 Data Model.
• XML Query and XPath Full-Text Requirements

– A description of feature requests that a Full-Text Recommendation needs to be able to
comply with.

• XML Query and XPath Full-Text Use Cases
– Real-world scenarios that a Full-Text specification is expected to be able to handle.

“A nascent publishing empire…”

Saturday, 23 October 2004 13

Syntax Overview

• Simple Syntax
– Like SQL
– Hence should become as popular

• Major concepts
– FLWR Expressions
– Data Types and Operators
– Functions

Saturday, 23 October 2004 14

FLWR Expressions
• FOR

– Iterates over a sequence of elements (‘tuples’)
• Typically selected via XPath expression

• LET
– Establishes a pointer to a given position/sequence

• WHERE
– Establishes a predicate that selects items

• RETURN
– Copy/gathers selected elements for further

processing
– “RETURN is not Return”

• “The return clause of a FLWOR expression is
evaluated once for each tuple in the tuple stream, and
the results of these evaluations are concatenated to
form the result of the FLWOR expression.”

“Realize that FLWR expressions are just as powerful as SQL SELECT queries. FLWRs are
capable of joins, subqueries, and set-based operations, just like SELECT queries.”

Saturday, 23 October 2004 15

FLWR Example: XML Data
<bib>

<book year="1994">
<title>TCP/IP Illustrated</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison-Wesley</publisher>
<price> 65.95</price>

</book>

<book year="1992">
<title>Advanced Programming in the Unix environment</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>

</book>

<book year="2000">
<title>Data on the Web</title>
<author><last>Abiteboul</last><first>Serge</first></author>
<author><last>Buneman</last><first>Peter</first></author>
<author><last>Suciu</last><first>Dan</first></author>
<publisher>Morgan Kaufmann Publishers</publisher>
<price>39.95</price>

</book>

<book year="1999">
<title>The Economics of Technology and Content for Digital TV</title>
<editor>

<last>Gerbarg</last><first>Darcy</first>
<affiliation>CITI</affiliation>

</editor>
<publisher>Kluwer Academic Publishers</publisher>

<price>129.95</price>
</book>

</bib>

Saturday, 23 October 2004 16

FLWR Example: XQuery/Result
<result>
{

for $book1 in doc("http://bstore1.example.com/bib.xml")//book,
$book2 in doc("http://bstore1.example.com/bib.xml")//book

let $aut1 := for $a in $book1/author
order by $a/last, $a/first
return $a

let $aut2 := for $a in $book2/author
order by $a/last, $a/first
return $a

where $book1 << $book2
and not($book1/title = $book2/title)
and deep-equal($aut1, $aut2)

return
<book-pair>

{ $book1/title }
{ $book2/title }

</book-pair>
}
</result>

<result>
<book-pair>

<title>TCP/IP Illustrated</title>
<title>Advanced Programming in the Unix environment</title>

</book-pair>
</result>

Find pairs of
books that have
different titles but
the same set of
authors

A FLWR Expression

http://bstore1.example.com/bib.xml
http://bstore1.example.com/bib.xml

Saturday, 23 October 2004 17

Data Types/Operators
• Based around

XPath…
– XQuery has

driven the
development
of XPath 2.0,
just as XSLT
drove
development
of XPath 1.0

• Groks
– Schemas,

DTDs and
Namespaces

Saturday, 23 October 2004 18

Functions

• Constructor Functions
• Standard Functions
• Sequence Functions
• External

xs:string(12345)

import schema namespace bib="urn:examples:xmp:bib"
bib:isbn("012345678Y")

subtract-dayTimeDuration-from-time(xs:time("11:12:00"), xdt:dayTimeDuration("P3DT1H15M"))
returns a normalized xs:time value corresponding to the lexical representation "09:57:00"

concatenate((1 2 3), (4 5))
returns (1 2 3 4 5)

define function outtie($v as xs:integer) as xs:integer external

index-of (("a", "sport", "and", "a", "pastime"), "a")
returns (1, 4)

Saturday, 23 October 2004 19

The W3C Use Cases
• “XMP”: Experiences and Exemplars

– Several example queries that illustrate requirements gathered
from the database and document communities

• “TREE”: Queries that preserve hierarchy
– XML document-types have a very flexible structure in which text

is mixed with elements and many elements are optional; show a
wide variation in structure; the ways in which elements are
ordered and nested are usually quite important

• “SEQ”: Queries based on Sequence
– Illustrates queries based on the sequence in which elements

appear in a document
• “R”: Access to Relational Data

– Treats a database table as an XML document; each tuple inside
the table is represented by a nested element. Inside the tuple-
elements, each column is in turn represented by an additional
nested element

• “STRING”: String Search
• “STRONG”: Queries that exploit strongly typed data

– Explores XQuery's support for types, using data that is governed
by a strongly typed XML Schema

There are other cases…

Saturday, 23 October 2004 20

“XMP”
<prices>

<book>
<title>Advanced Programming in the Unix environment</title>
<source>bstore2.example.com</source>
<price>65.95</price>

</book>
<book>

<title>Advanced Programming in the Unix environment</title>
<source>bstore1.example.com</source>
<price>65.95</price>

</book>
<book>

<title>TCP/IP Illustrated</title>
<source>bstore2.example.com</source>
<price>65.95</price>

</book>
<book>

<title>TCP/IP Illustrated</title>
<source>bstore1.example.com</source>
<price>65.95</price>

</book>
<book>

<title>Data on the Web</title>
<source>bstore2.example.com</source>
<price>34.95</price>

</book>
<book>

<title>Data on the Web</title>
<source>bstore1.example.com</source>
<price>39.95</price>

</book>
</prices>

Saturday, 23 October 2004 21

“XMP/1”
<results>

{
for $b in doc("http://bstore1.example.com/bib.xml")/bib/book
return

<result>
{ $b/title }
{ $b/author }

</result>
}

</results>
<results>

<result>
<title>TCP/IP Illustrated</title>
<author>

<last>Stevens</last>
<first>W.</first>

</author>
</result>
…
<result>

<title>Data on the Web</title>
<author>

<last>Abiteboul</last>
<first>Serge</first>

</author>
<author>

<last>Buneman</last>
<first>Peter</first>

</author>
<author>

<last>Suciu</last>
<first>Dan</first>

</author>
</result>

</results>

Create a flat list
of all the title-
author pairs, with
each pair
enclosed in a
"result" element.

http://bstore1.example.com/bib.xml

Saturday, 23 October 2004 22

“XMP/2”
<results>

{
let $a := doc("http://bstore1.example.com/bib/bib.xml")//author
for $last in distinct-values($a/last),

$first in distinct-values($a[last=$last]/first)
order by $last, $first
return

<result>
<author>

<last>{ $last }</last>
<first>{ $first }</first>

</author>
{

for $b in doc("http://bstore1.example.com/bib.xml")/bib/book
where some $ba in $b/author

satisfies ($ba/last = $last and $ba/first=$first)
return $b/title

}
</result>

}
</results>

<results>
<result>

<author>
<last>Abiteboul</last>
<first>Serge</first>

</author>
<title>Data on the Web</title>

</result>
…
<result>

<author>
<last>Suciu</last>
<first>Dan</first>

</author>
<title>Data on the Web</title>

</result>
</results>

For each author in
the bibliography, list
the author's name
and the titles of all
books by that author,
grouped inside a
"result" element.

http://bstore1.example.com/bib/bib.xml
http://bstore1.example.com/bib.xml

Saturday, 23 October 2004 23

“TREE”

<?xml version="1.0"?>
<!DOCTYPE book SYSTEM "book.dtd">
<book>

<title>Data on the Web</title>
<author>Serge Abiteboul</author>
<author>Peter Buneman</author>
<author>Dan Suciu</author>
<section id="intro“

difficulty="easy" >
<title>Introduction</title>
<p>Text ... </p>
<section>

<title>Audience</title>
<p>Text ... </p>

</section>
<section>

<title>Web Data and the Two Cultures</title>
<p>Text ... </p>
<figure height="400" width="400">

<title>Traditional client/server architecture</title>
<image source="csarch.gif"/>

</figure>
<p>Text ... </p>

</section>
</section>
<section id="syntax" difficulty="medium" >

…
</section>
</section>

</book>

<!ELEMENT book (title, author+, section+)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT section (title, (p | figure | section)*)>
<!ATTLIST section

id ID #IMPLIED
difficulty CDATA #IMPLIED>

<!ELEMENT p (#PCDATA)>
<!ELEMENT figure (title, image)>
<!ATTLIST figure

width CDATA #REQUIRED
height CDATA #REQUIRED >

<!ELEMENT image EMPTY>
<!ATTLIST image

source CDATA #REQUIRED >

Saturday, 23 October 2004 24

“TREE/1”
declare function local:toc($book-or-section as element()) as element()*
{

for $section in $book-or-section/section
return

<section>
{ $section/@* , $section/title , local:toc($section) }

</section>
};

<toc>
{
for $s in doc("book.xml")/book

return local:toc($s)
}

</toc>

<toc>
<section id="intro" difficulty="easy">

<title>Introduction</title>
<section>

<title>Audience</title>
</section>
<section>

<title>Web Data and the Two Cultures</title>
</section>

</section>
<section id="syntax" difficulty="medium">

<title>A Syntax For Data</title>
<section>

<title>Base Types</title>
</section>
<section>

<title>Representing Relational Databases</title>
</section>
<section>

<title>Representing Object Databases</title>
</section>

</section>
</toc>

Prepare a
(nested) table of
contents, listing all
the sections and
their titles.
Preserve the
original attributes
of each <section>
element, if any

Saturday, 23 October 2004 25

“TREE/2”
<top_section_count>
{

count(doc("book.xml")/book/section)
}

</top_section_count> <top_section_count>2</top_section_count>

How many top-level
sections are there?

<section_count>{ count(doc("book.xml")//section) }</section_count>,
<figure_count>{ count(doc("book.xml")//figure) }</figure_count>

<section_count>7</section_count>
<figure_count>3</figure_count>

How many sections
are in there, and how
many figures?

Saturday, 23 October 2004 26

“SEQ”
<report>

<section>
<section.title>Procedure</section.title>
<section.content>
The patient was taken to the operating room where she was placed
in supine position and
<anesthesia>induced under general anesthesia.</anesthesia>
<prep>

<action>A Foley catheter was placed to decompress the bladder</action>
and the abdomen was then prepped and draped in sterile fashion.

</prep>
<incision>

A curvilinear incision was made
<geography>in the midline immediately infraumbilical</geography>
and the subcutaneous tissue was divided
<instrument>using electrocautery.</instrument>

</incision>
The fascia was identified and
<action>#2 0 Maxon stay sutures were placed on each side of the midline.</action>
<incision>

The fascia was divided using <instrument>electrocautery</instrument>
and the peritoneum was entered.

</incision>
<observation>The small bowel was identified.</observation>
and <action>

the <instrument>Hasson trocar</instrument>
was placed under direct visualization.

</action>
<action>

The <instrument>trocar</instrument>
was secured to the fascia using the stay sutures.

</action>
</section.content>

</section>
</report>

Saturday, 23 October 2004 27

“SEQ/1”
let $i2 := (doc("report1.xml")//incision)[2]
for $a in (doc("report1.xml")//action)[. >> $i2][position()<=2]
return $a//instrument

<instrument>Hasson trocar</instrument>
<instrument>trocar</instrument>

What Instruments
were used in the
first two Actions
after the second
Incision?

for $p in doc("report1.xml")//section[section.title = "Procedure"]
where not(some $a in $p//anesthesia satisfies

$a << ($p//incision)[1])
return $p

(No sections satisfy the query,
thankfully.)

Find "Procedure"
sections where no
Anesthesia
element occurs
before the first
Incision

Saturday, 23 October 2004 28

“R”
<items>

<item_tuple>
<itemno>1001</itemno>
<description>Red Bicycle</description>
<offered_by>U01</offered_by>
<start_date>1999-01-05</start_date>
<end_date>1999-01-20</end_date>
<reserve_price>40</reserve_price>

</item_tuple>
<!-- !!! Snip !!! -->

<users>
<user_tuple>

<userid>U01</userid>
<name>Tom Jones</name>
<rating>B</rating>

</user_tuple>
<!-- !!! Snip !!! -->

<bids>
<bid_tuple>

<userid>U02</userid>
<itemno>1001</itemno>
<bid>35</bid>
<bid_date>1999-01-07</bid_date>
</bid_tuple>

<bid_tuple>
<!-- !!! Snip !!! -->

Saturday, 23 October 2004 29

“R/1”
<result>

{
for $i in doc("items.xml")//item_tuple
let $b := doc("bids.xml")//bid_tuple[itemno = $i/itemno]
where contains($i/description, "Bicycle")

order by $i/itemno
return

<item_tuple>
{ $i/itemno }
{ $i/description }
<high_bid>{ max($b/bid) }</high_bid>

</item_tuple>
}

</result>
<result>

<item_tuple>
<itemno>1001</itemno>
<description>Red Bicycle</description>
<high_bid>55.0</high_bid>

</item_tuple>
<item_tuple>

<itemno>1003</itemno>
<description>Old Bicycle</description>
<high_bid>20.0</high_bid>

</item_tuple>
<item_tuple>

<itemno>1007</itemno>
<description>Racing Bicycle</description>
<high_bid>225</high_bid>

</item_tuple>
<item_tuple>

<itemno>1008</itemno>
<description>Broken Bicycle</description>
<high_bid></high_bid>

</item_tuple>
</result>

For all bicycles,
list the item
number,
description, and
highest bid (if
any), ordered by
item number

Saturday, 23 October 2004 30

“R/2”
<result>

{
unordered (
for $seller in doc("users.xml")//user_tuple,

$buyer in doc("users.xml")//user_tuple,
$item in doc("items.xml")//item_tuple,
$highbid in doc("bids.xml")//bid_tuple

where $seller/name = "Tom Jones"
and $seller/userid = $item/offered_by
and contains($item/description , "Bicycle")
and $item/itemno = $highbid/itemno
and $highbid/userid = $buyer/userid
and $highbid/bid =

max(
doc("bids.xml")//bid_tuple

[itemno = $item/itemno]/bid
)

return
<jones_bike>

{ $item/itemno }
{ $item/description }
<high_bid>{ $highbid/bid }</high_bid>
<high_bidder>{ $buyer/name }</high_bidder>

</jones_bike>
)

}
</result>

<result>
<jones_bike>

<itemno>1001</itemno>
<description>Red Bicycle</description>
<high_bid>

<bid>55</bid>
</high_bid>
<high_bidder><name>Mary Doe</name></high_bidder>

</jones_bike>
</result>

For bicycle(s)
offered by Tom
Jones that have
received a bid, list
the item number,
description,
highest bid, and
name of the
highest bidder,
ordered by item
number

Saturday, 23 October 2004 31

“R/3”
declare function local:bid_summary()

as element()*
{

for $i in distinct-values(doc("bids.xml")//itemno)
let $b := doc("bids.xml")//bid_tuple[itemno = $i]
return

<bid_count>
<itemno>{ $i }</itemno>
<nbids>{ count($b) }</nbids>

</bid_count>
};

<result>
{

let $bid_counts := local:bid_summary(),
$maxbids := max($bid_counts/nbids),
$maxitemnos := $bid_counts[nbids = $maxbids]

for $item in doc("items.xml")//item_tuple,
$bc in $bid_counts

where $bc/nbids = $maxbids and $item/itemno = $bc/itemno
return

<popular_item>
{ $item/itemno }
{ $item/description }
<bid_count>{ $bc/nbids/text() }</bid_count>

</popular_item>
}

</result>
<result>

<popular_item>
<itemno>1001</itemno>
<description>Red Bicycle</description>
<bid_count>5</bid_count>

</popular_item>
<popular_item>

<itemno>1002</itemno>
<description>Motorcycle</description>
<bid_count>5</bid_count>

</popular_item>
</result>

List the item
number and
description of the
item(s) that
received the
largest number of
bids, and the
number of bids it
(or they) received

Saturday, 23 October 2004 32

“String”
declare function local:partners($company as xs:string) as element()*
{

let $c := doc("company-data.xml")//company[name = $company]
return $c//partner

};

let $foobar_partners := local:partners("Foobar Corporation")

for $item in doc("string.xml")//news_item
where

some $t in $item//title satisfies
(contains($t/text(), "Foobar Corporation")
and (some $partner in $foobar_partners satisfies

contains($t/text(), $partner/text())))
or (some $par in $item//par satisfies
(contains(string($par), "Foobar Corporation")

and (some $partner in $foobar_partners satisfies
contains(string($par), $partner/text()))))

return
<news_item>

{ $item/title }
{ $item/date }

</news_item>

<news_item>
<title> Gorilla Corporation acquires YouNameItWeIntegrateIt.com </title>
<date>1-20-2000</date>

</news_item>
<news_item>

<title>Foobar Corporation releases its new line of Foo products
today</title>

<date>1-20-2000</date>
</news_item>

Find news items
where the Foobar
Corporation and
one or more of its
partners are
mentioned in the
same paragraph
and/or title. List
each news item by
its title and date

Saturday, 23 October 2004 33

“STRONG”
import schema namespace ipo="http://www.example.com/IPO";
import schema namespace pst="http://www.example.com/postals";
import schema namespace zips="http://www.example.com/zips";

import module namespace zok="http://www.example.com/xq/zips";
import module namespace pok="http://www.example.com/xq/postals";

declare function local:address-ok($a as element(*, ipo:Address))
as xs:boolean

{
typeswitch ($a)

case $zip as element(*, ipo:USAddress)
return zok:zip-ok($zip)

case $postal as element(*, ipo:UKAddress)
return pok:postal-ok($postal)

default return false()
};

for $p in doc("ipo.xml")//element(ipo:purchaseOrder)
where not(local:address-ok($p/shipTo) and local:address-ok($p/billTo))
return $p

Return purchase orders with an erroneous postal
code or zip code (depending on whether it is a UK
Address or a US Address)

http://www.example.com/IPO
http://www.example.com/postals
http://www.example.com/zips
http://www.example.com/xq/zips
http://www.example.com/xq/postals

Saturday, 23 October 2004 34

XQueryX Example

FOR $p IN distinct(doc("bib.xml")
//publisher)

LET $a := avg(doc("bib.xml")
//book[publisher = $p]/price)

RETURN
<publisher>

<name>{ $p/text() }</name>
<avgprice>{ $a }</avgprice>

</publisher>

<q:query xmlns:q="http://www.w3.org/2001/06/xqueryx">
<q:flwr>

<q:forAssignment variable="$p">
<q:function name="distinct">

<q:step axis="SLASHSLASH">
<q:function name="document">

<q:constant datatype="CHARSTRING">bib.xml</q:constant>
</q:function>
<q:identifier>publisher</q:identifier>

</q:step>
</q:function>

</q:forAssignment>
<q:letAssignment variable="$a">

<q:function name="avg">
<q:step axis="CHILD">

<q:function name="document">
<q:constant datatype="CHARSTRING">bib.xml</q:constant>

</q:function>
<q:step axis="CHILD">

<q:predicatedExpr>
<q:identifier>book</q:identifier>
<q:predicate>

<q:function name="EQUALS">
<q:identifier>publisher</q:identifier>
<q:variable>$p</q:variable>

</q:function>
</q:predicate>

</q:predicatedExpr>
<q:identifier>price</q:identifier>

</q:step>
</q:step>

</q:function>
</q:letAssignment>
<q:return>

<q:elementConstructor>
<q:tagName>

<q:identifier>publisher</q:identifier>
</q:tagName>
<q:elementConstructor>

<q:tagName>
<q:identifier>name</q:identifier>

</q:tagName>
<q:step axis="CHILD">

<q:variable>$p</q:variable>
<q:nodeKindTest kind="TEXT" />

</q:step>
</q:elementConstructor>
<q:elementConstructor>

<q:tagName>
<q:identifier>avgprice</q:identifier>

</q:tagName>
<q:variable>$a</q:variable>

</q:elementConstructor>
</q:elementConstructor>

</q:return>
</q:flwr>

</q:query>

Disliked for its verboseness!

http://www.w3.org/2001/06/xqueryx

Saturday, 23 October 2004 35

What about Update?

• Full CRUD is not here yet…
– Various proposals being readied for

XQuery 2.0
• FLWU (“FLU”?)

update replace input()/bib/book[title = "TCP/IP Illustrated"]/@year
with attribute year {2003}

update for $a in input()/bib/book
let $b := $a/@year
where ($b >= 1990) and ($b <= 1994)
do replace $b

with attribute year {2003}

update insert
<author>

<last>Schneider</last> <first>Helge</first>
</author>
following input()/bib/book[title='Data on the Web']/author[1]

Examples from Tamino

Saturday, 23 October 2004 36

XQJ
• JSR-225, titled “XQuery API for Java (XQJ).”
• A common API for XQuery/Java interaction

– Proposed by Oracle and IBM
– Likely to live in the javax.xml.xquery package

• As JDBC is for SQL, so XQJ will be for XQuery
• Some goals:

– A stylistic similarity with JDBC and Java API for XML
Processing (JAXP)

• Can compile queries for repeated execution
• Parameterized queries and discovery/binding of input

parameters
– A connection-oriented interface with transactional

support
• (interesting because XQuery 1.0 doesn’t have a standard

update mechanism)
– A connectionless interface for single-shot queries
– Can obtain an XQJ connection from a JDBC connection

for engines where that makes sense
– Provide for easy back-end plugability

Saturday, 23 October 2004 37

Resources
• Pages

– http://www.w3.org/XML/Query
– http://otn.oracle.com/oramag/oracle/03-

may/o33devxml.html?_template=/ocom/technology/conte
nt/print

– http://www.perfectxml.com/XQuery.asp
– http://www.transentia.com.au

• This presentation will be available in a day or so
• Implementations

– BEA Liquid Data,
http://www.bea.com/framework.jsp?CNT=index.htm&FP=/
content/products/liquid_data

– Bumblebee, http://xquery.com/bumblebee
• “Bumblebees buzz around FLWRs”

– Saxon, http://www.saxonica.com/
– Qizx/open, http://www.xfra.net/qizxopen/
– Oracle xquery, http://otn.oracle.com
– Tamino,

http://tamino.demozone.softwareag.com/demoXQuery/XQ
ueryDemo/index.jsp;jsessionid=0EF28F7E0761C23140E25
4771CEAC95D

http://www.w3.org/XML/Query
http://otn.oracle.com/oramag/oracle/03
http://www.perfectxml.com/XQuery.asp
http://www.transentia.com.au
http://www.bea.com/framework.jsp?CNT=index.htm&FP=/
http://xquery.com/bumblebee
http://www.saxonica.com/
http://www.xfra.net/qizxopen/
http://otn.oracle.com
http://tamino.demozone.softwareag.com/demoXQuery/XQ

Saturday, 23 October 2004 38

Demo Time!
WebCDAU
ASP.Net

HonestFranz
Java

CDDepotHK
Java

Shipping
XML File

Financial
XML File

<result>
<jones_bike>

<itemno>1001</itemno>
<description>Red Bicycle</description>
<high_bid>

<bid>55</bid>
</high_bid>
<high_bidder><name>Mary Doe</name></high_bidder>

</jones_bike>
</result>

XQuery

